

Better Data • Informed Choices • Improved Results

Using Machine Learning Methods to predict Algebra 1 PARCC Scores

Tracy Sweet, Brennan Register, & Ashani Jayasekera MLDS Research Branch and UMCP

MLDS Research Series May 19, 2023

Machine Learning

A basic supervised machine learning workflow:

Machine Learning

Accuracy: a measure of how well the machine learning algorithm predicts an outcome

For a continuous outcome, we use mean squared error.

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

Bias vs Variance

If the fitted model is too complex, it will fit the training data very well, but it will not fit the test data well.

Machine Learning Algorithms

Multiple Linear regression

• A parametric model

Lasso regression

 A parametric model with a regularization term

Regression trees

 A non-parametric decision tree

Random forests

 A collection of trees built to reduce overfitting

Regression Models $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$

$$RSS = \sum_{i} (Y_i - \beta X_i)^2$$

Lasso regression

$$RSS = \sum_{i} (Y_i - \beta X_i)^2 + \lambda \sum_{j} |\beta_j^2|$$

Regression Trees

- Partition the data based on the value of a covariate in a sequential way
- Every node of the tree produces the same predicted value
- Considered a high variance algorithm

How many months will my PhD take?

Regression Trees

Regression Trees

A single tree is fit to the data, optimizing squared error loss at each division.

Random Forests

Many trees are fit to the data, optimizing squared error loss at each division, but only a random subset of variables can be used at each split.

Using these methods to predict student outcomes in Maryland

Research Questions

- RQ1: How can data science methods be used to conduct research with MLDS data that helps to inform policy decisions in the State?
 - RQ1a: Can we predict K12 student outcome variables (e.g. PARCC Algebra 01 scores)?
 - RQ1b: Can we use predicted K12 student outcome variables as covariates in analyses of postsecondary outcomes (e.g. type of postsecondary institution)?

RQ1a: Can we accurately predict K12 student outcome variables?

RQ1a: Can we accurately predict K12 student outcome variables?

Algorithm	Mean Square Error
Linear Regression	268
Lasso	229
Decision Tree	334
Random Forest	244

Lower is better!

A squared error of 229 is approximately 0.5 of a standard deviation.

Algorithm	Mean Square Error
Linear Regression	418
Lasso	334
Decision Tree	471
Random Forest	336

Lower is better!

A squared error of 334 is approximately 0.6 of a standard deviation.

RQ1b: Can we use predicted K12 student outcome variables as covariates in analyses of post-secondary outcomes?

Predicting Type of postsecondary institution: 2-year vs 4-Year Middle School Cohort

Predictor	Estimated Coefficient	P-value
True ALG01 Score	0.016	<0.001
Predicted Score - LM	0.017	<0.001
Predicted Score - Lasso	0.020	<0.001
Predicted Score - Tree	0.020	<0.001
Predicted Score - Random Forest	0.022	<0.001

Predicting Type of postsecondary institution: 2-year vs 4-Year Middle School Cohort

Predictor	Estimated Coefficient	P-value
True ALG01 Score	0.019	<0.001
Predicted Score - LM	0.022	<0.001
Predicted Score - Lasso	0.026	<0.001
Predicted Score - Tree	0.022	<0.001
Predicted Score - Random Forest	0.029	<0.001

*While controlling for:

Special Education Status, English Language Learner, Race, Ethnicity, Gender

Predicting Type of postsecondary institution: 2-year vs 4-Year High School Cohort

Predictor	Estimated Coefficient	P-value
True ALG01 Score	0.009	<0.001
Predicted Score - LM	0.012	<0.001
Predicted Score - Lasso	0.010	<0.001
Predicted Score - Tree	0.010	<0.001
Predicted Score - Random Forest	0.012	<0.001

Predicting Type of postsecondary institution: 2-year vs 4-Year High School Cohort

Predictor	Estimated Coefficient	P-value
True ALG01 Score	0.020	<0.001
Predicted Score - LM	0.028	<0.001
Predicted Score - Lasso	0.030	<0.001
Predicted Score - Tree	0.021	<0.001
Predicted Score - Random Forest	0.030	<0.001

*While controlling for:

Special Education Status, English Language Learner, Race, Ethnicity, Gender

Additional Future Research Questions

- RQ2: How equitable are current analytical methods and should we conduct comparisons differently?
 - How do different methods and algorithms compare on estimating and predicting outcomes for minoritized students?

RQ2: Exploring Algorithmic Bias

- Algorithmic Bias: The phenomena where machine learning algorithms systematically discriminate against groups or individuals based on demographic characteristics (O'Neil, 2016; Crawford & Whittaker, 2018).
- Occurs either when the training data used to develop the algorithm contain inherent biases or when the algorithm induces biases during the learning process.

RQ2: Exploring Algorithmic Bias

- Comparative Analysis (Dwork et al., 2012)
 - Compare the predications of an algorithm across different groups to uncover bias.
- Bias Testing (Bolukbasi et al., 2016)
 - Statistical tests can be designed to uncover potential biases
- Causal Inference (Kilbertus et al., 2017)
 - Analyzing the causal relationship between the algorithmic inputs and outputs.

RQ2: Exploring Algorithmic Bias

- Comparative Analysis (Dwork et al., 2012)
 - Compare the predications of an algorithm across different groups to uncover bias.
- For continuous outcomes, compare MSE rates across groups
 - If no bias, then there should be the similar rates of prediction error across groups.
- For categorical outcomes, compare False Positive Rates and False Negative Rates
 - If no bias, then there should be similar rates of misclassification across groups.

Racial Bias: Middle School

Racial Bias: High School

Gender Bias: High School

Ethnic Bias: High School

ELL Bias: Middle School

ELL Bias: High School

Title 1 Eligibile Bias: Middle School

MLDS CENTER

Title 1 Eligible Status Bias: High School

Special Education Bias: Middle School

Special Education Bias: High School

Summary

- We applied 4 different prediction algorithms to predict Alg I test scores; Lasso and random forests were the best methods
- Our accuracy was on average about 0.5-0.6 standard deviations off
- When used as covariates, our predicted test scores over-estimated their importance
- Our algorithms did not predict all subgroups equally well
 - Multiple regression and trees were the worst.
 - Overall poor prediction for Asian and Black students and ELL students.

Conclusions

- Future work is needed to determine the extent to which ML can be used to predict missing test scores or predict student outcomes
- These algorithms should be used with caution as their predictive accuracy varies by subgroup
- Additional work is needed before they should be used to predict Black and Asian student outcomes
- Given the poor performance of regression, methodological work is needed to understand the extent to which regression should be used to address education policy research questions, especially when comparing subgroups.

Questions or Feedback?

Thank you!

References

- Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. *Proceedings of the 3rd Innovations in Theoretical Computer Science Conference*. https://doi.org/10.1145/2090236.2090255
- Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. *Advances in Neural Information Processing Systems, 29.*
- Kilbertus, N., Caruana, R., Hardt, M., Veale, M., Gehrmann, S., & Ras, G. (2017). Avoiding discrimination through causal reasoning. *Advances in Neural Information Processing Systems, 30.*
- O'Neil, Cathy. (2016). *Weapons of Math Destruction: How big data increases inequality and threatens democracy.* Broadway Books.
- Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E.,Mathur, V., ... & Schwartz, O. (2018). *Al now report 2018* (pp. 1-62).New York: AI Now Institute at New York University.